
R D-RI57 692 LAiNGUAGE ACCESS TO DISTRIBUTED DATA WITH ERROR RECOVERY 1/
I (U) SRI INTERNATIONAL MENLO PARK CA ARTIFICIAlL1

INTELLIGENCE CENTER E D SACERDOTI FEB 77 SRI-TN-i48 M
UNCLASSIFIED F/O 9/2 N

IMoEnEEEon

2-8

1(11111012-0

1-25 11111 14 ~fl1

NATIONA& BUREAU OF STANDADS
mICROCOpy RESOLUTIONd TEST CHART

%I

CO February 197

LO)

Language Acce3 to Distributed Bata with Error Recovery

* by

Earl D. Sacerdot'L

LU Artificial irntelliizence Cen~te~r

* 855

S q

ABSTRACT

IF
This pper discusses an effort in the application artificial

intelligence to the access of data from a large, distribute data base
over a computer network. A running system is described th t provides
access to multiple instances of a data base management system over the
ARPANET in real time. The system accepts a rather wide range of natural
lfnguage questions about the data, plans a sequence of appropriate
queries to the data base management system to answer the question,
determines on which machine to carry out the queries, establishes links
to those machines over the ARPANET, monitors the prosecution of the
queries and recovers from certain errors in execution, and prepares a
relevant answer to the original question. In addition to the functional
components that make up the demonstration system, equivalent functional
components with higher levels of sophistication are discussed andproposed. . - ., . .. ,- . , • '

'0D-~(I

1 *

p ~ii ~r

ACKNOWLEDGMENTS

The work described in this paper represents the joint efforts of
an integrated, energetic group at SRI. Members of this group include
Rich Fikes (now at Xerox PARC), Koichi Furukawa (now at ETL), Gary
Hendrix, Paul Morris (now at UC Irvine), Nils Nilsson, Bill Paxton, Rene
Reboh, Jane Robinson, Daniel Sagalowicz, Jonathan Slocum, and Mike
Wilber. The research reported herein, other than the development of the
LIFER system, was supported by the Advanced Research Projects Agency of
the Department of Defense under contract DAAG29-76-C-0012 with the U. S.
Army Research Office.

iii

.-,.....-',,''.. ..".... "........"... .-...... ,..... + .. -*.. -+..... ., .. ,,,, ,,
... .~~~~ ~~~~~~~~~~~~~~.... +..... --. -- ,,-%.. -...- %.,

Language-Access to Distributed Data with Error Recovery

Earl D. Sacerdoti
Artificial Intelligence Center
Stanford Research Institute

A. Introduction

Man's use of tools shapes his environment. Man's use of tools also

shapes his behavior. As technology evolves more complex tools, the

impositions these tools make on their users become more stringent.

Although it is difficult to reproduce strings of ten digits, we have all

learned to do it well, because the interface to the telephone system

demands it. Although it is difficult to type very fast (the standard

keyboard was originally designed to allow enough time between keystrokes

to keep early typewriters from jamming), we have trained ourselves to

use a suboptimal --indeed, subaverage-- arrangement of keys, because the

interface to keyboard systems demands it.

As the amount of information moving across the man-machine

interface increases, the impositions of machines on our behavior also

increase. Since computers are our fastest and most sophisticated tools

for processing information, the greatest impositions we face from our

tools occur in dealing with computers. A goal of research in Artifical

Intelligence is to reduce the extent of these impositions, thus making

the benefits of computer use more widely available.

• .. .: .''., .-. .'. ,'- , ..-.2 .. .- .-... .'.. -.. - --- -. -.'. '-.'1

w. - X - I

One example of the imposition set by the computer arises in the

area of management information systems. Imagine that a user in a

decision-making role knows that his data base contains some information

that pertains to a decision he must make. The user wishes to extract

that information from the data base and restructure, summarize, or

analyze it in some way. Ideally, the user would be able to interact

with the computer in his own terminology and issue a request for the

information he desired. But today's computer systems typically require

following a very stilted, formal mode of interaction. Even then, the

user will only be able to obtain certain preprogrammed reports, and this

is hardly what is needed for the typical decision maker in his role of

managing by exception.

If the decision maker wants a new perspective on the information in

the data base, he must call in a programmer who works with the data base

on a regular basis. The programmer carries in his head four kinds of

knowledge that must be used in order to gather the desired information.

First, he knows how to translate the request for information from the

decision maker's terms into the terms of the data that is actually

stored in the data base. Second, he is able to convert the request for

data from the overall data base into a series of requests for particular

items of data from particular files. Third, he knows how to translate

the particular requests into programs or calls on the data base

management system's primitives in order to actually initiate the

appropriate computation. Fourth, he knows how to monitor the execution

of his request to ensure that the expected data is being obtained.

2

• ..-...-.... -, -.*.. w*-.-...-.- -. -... ...-... ~- ..- . -. ' - *. --..-. .-..-

For the past year, a group at SRI has been working on automating

the activities carried out by our hypothetical data base expert. The

following section presents an overview of a running system that performs

at least some of the expert's functions both reliably and efficiently.

Our current progress on representing and using each of the four kinds of

knowledge described above will be detailed in the subsequent sections.

B. Overview of the LADDER system

Our running demonstration system, called LADDER (for Language

Access to Distributed Data with Error Recovery) represents an

application of state-of-the-art techniques from the field of artificial

intelligence in a real-time performance system. Because it consists of

a number of rather independent, modular components, new capabilities can

be incorporated easily as we learn how to make them run efficiently.

LADDER has been developed as a management aid to Navy decision

makers, so the examples presented throughout this paper are drawn from

the domain of Navy command and control. Applications of this work to

other decision making and data access problems should be obvious.

The LADDER system consists of three major functional components, as

displayed in Figure 1, that provide levels of buffering of the user from

a data base management system (DBMS). LADDER employs the DBMS to

retrieve specific field values from specific files just as a programmer

might, so that the user of LADDER need not be aware of the names of

-. .. • ., •-.- ',-. '. " -. ' ...- .- -,,.-- .,' j - - , - .,'.'.., ".".,.,"% .--- ..--- .', ,-"-....-, 3 ,

7p7
a(

U. U

ii

zuj L)

0

ww

specific fields, how they are formatted, how they are structured into

files, or even where the files are physically located. Thus the user

can think he is retrieving information from a "general information base"

rather than retrieving specific items of data from a highly formatted,

traditional data base.

LADDER's first component accepts queries in a restricted subset of

natural language. This component, called INLAND (for Informal Natural

Language Access to Navy Data) produces a query or queries to the data

base as a whole. The queries to the data base refer to specific fields,

but make no mention of how the information in the data base is broken

down into files.

For example, suppose a user types in "What is the length of the

Kennedy?" (or "Give me the Kennedy's length," or even "Type length

Kennedy"). INLAND would translate this into the query:

((? LGH) (NAM EQ 'JOHN#F.KENNEDY')),

where LGH is the name of the length field, NAM the name of the ship name

field, and 'JOHN#F.KENNEDY' the value of the NAM field for the record

concerned with the Kennedy. This query is then passed along to the

second component of the system.

The queries from INLAND to the data base are specified without any

presumption about the way the data is broken up into files. The second

functional component, called IDA (for Intelligent Data Access) breaks

down the query against the entire data base into a sequence of queries

5

against various files. IDA employs a model of the structure of the data

base to perform this operation, preserving the linkages among the

records retrieved so that an appropriate answer to the overall query may

be returned to the user.

For example, suppose that the data base consists of a single file

whose records contain the fields

(NAM CLASS LGH).

Then, to answer the data base query issued above, IDA can simply create

one file retrieval query that says, in essence, "For the ship record

with NAM equal 'JOHN#F.KENNEDY', return the value of the LGH field."

Suppose, however, that the data base is structured in two files,' as

follows:

SHIP: (NAM CLASS ...)
CLASS: (CLASSNAME LGH ...)

In this case the single query about the Kennedy's length must be broken

into two file queries. These would say, first, "Obtain the value of the

CLASS field for the SHIP record with NAM equal 'JOHN#F.KENNEDY'." Then,

"Find the corresponding CLASS record, and return the value of the LGH

field from that record." Finally, IDA would compose an answer that is

relevant to the user's query (i.e. it will return NAM and LGH data,

supressing the CLASS-to-CLASSNAME link).

In addition to planning the correct sequence of file queries, IDA

• This is how an actual Navy data base is likely to look. Naval ships
are built in classes with similar physical characteristics Just as
automobiles are built in models.

l" ' w" a "- " " i " " 'm " " 2 ' ' " ". " " . - b ". . ._ , " -6'

must actually compose those queries in the language of the DBMS. Our

current system accesses, on a number of different machines, a DBMS

called the Datacomputer [1] [2], whose input language is called

Datalanguage. IDA creates the relevant Datalanguage by inserting field

and file names into pre-stored templates. However, since the data base

in question is distributed over several different machines, the

Datalanguage that IDA produces does not refer to specific files in

specific directories on specific machines. It refers instead to generic

files, files containing a specific kind of record. For example, the

queries discussed above might refer to the SHIP file rather than file

SHIP.ACTIVE in directory NAVY on machine DBMS-3. It is the function of

the third major component of LADDER to find the location of the generic

files and manage the access to them.*

To carry out this function, the third component, called FAM (for

File Access Manager) relies on a locally stored model showing where

files are located throughout the distributed data base. When it

receives a query expressed in generic Datalanguage, it searches its

model for the primary location of the file (or files) to which it

refers. It then establishes connections over the ARPANET to the

appropriate computers, logs in, opens the files, and transmits the

Datalanguage query, amended to refer to the specific files that are

being accessed. If, at any time, the remote computer crashes, the file

* In the introduction we described four activities that our system would
carry out, and here we are describing only three functional components.
This is because the third activity, translating particular queries into
the primitives of particular DBMS's, is shared between IDA and FAM.

". j 4 .. . ° .. "- -. -.. ". -. ".-..•....,..................-................ .-.

becomes inaccessible, or the network connection fails, FAM can recover,

and, if a backup file is mentioned in FAM's model of file locations, it

can establish a connection to a backup site and retransmit the query.

The existing system, written in INTERLISP [33, can process a

fairly wide range of queries against a data base consisting of some 14

files containing about 100 fields. Processing a typical question takes

a very few seconds of cpu time on a DEC KA-1O computer. An annotated

transcript of a sample session with the system is provided in the

Appendix.

Thus LADDER provides at least some of the functions of the

hypothetical data base expert in each area of expertise mentioned in the

previous section. The following sections will provide more detailed

views of the demonstration programs and ongoing research efforts in each

of these areas.

C. Natural Language Interface

The task of providing access to the data base in the decision

maker's terms is served by a functional component that accepts typed

English text as input and produces formal queries to the IDA component

as output. In order to provide truly natural access, this component

must allow each user to expand the language definition with his own

idiosyncratic language use.

8

We are developing a family of language interface components with

increasing degrees of generality and true "understanding" of the input.

In this section we describe our initial performance system. In section

F. below we present our plans for an integrated family of systems that

will support the staged development of increasingly sophisticated

language interface components that can be integrated into the running

system.

Our initial system is built around a package of programs for

language definition and parsing called Language Interface Facility with

Elliptical and Recursive Features (LIFER) [4]. LIFER consists of a

parser and a set of interactive functions for specifying a language

fragment oriented towards access of an existing computer system. The

language is defined by what may be viewed as a set of productions of the

form

meta-svmbol => pattern, expression,

where meta-svmbol is a meta-symbol in the language, pattern is a list of

meta-symbols and symbol. in the language, and e0j n is a LISP

expression whose value, when computed, is assigned as the value of the

meta-symbol.

The set of productions is used by LIFER to build internal

structures, called transitnQ trees, that represent the language

defined.' The transition trees are then used to parse user inputs in a

• Transition trees are a simplification of Woods' augmented transition

networks [5].

<< OPEN %TOP.BLUEFILE.TRACKHIST READ;
<< FOR STDPORTI , TRACKHIST WITH(((PTPNS EQ 'N') AND (PTPX LT
<< '05345') AND (PTPX GT '03545') AND (PTPEW EQ 'E') AND (PTPY LT
<< '02330') AND (PTPY GT '00530'))) BEGIN STRINGI = UIC STRING2 = VCN
<< END;
*> TOTAL BYTES TRANSFERRED: 60

* 'Return the name of any of the four ships within 500 miles of

* Naples whose maximum cruising speed exceeds 35 knots.'
<< FOR STDPORT1 I SHIP WITH (MCSF GT '35.0') AND
<< (UIC EQ 'N00003' OR UIC EQ 'NO0001' OR UIC EQ '*') AND
<< (VCN EQ '0' OR VCN EQ '99025' OR VCN EQ '99024') BEGIN STRINGI NAM
<< STRING2 = UIC STRING3 = VCN END;
*> TOTAL BYTES TRANSFERRED: 0
Computation tire for query: 4392 milliseconds.
Real time for query: 149401 milliseconds.
NONE

8_how far is the kitty hwk from gibraltar
spelling-> HAWK

• Spelling correction is performed using the INTERLISP spelling
corrector with a list of candidates composed of valid words

• that could have led to parses of the sentence if they had
• replaced the misspelled word.

PARSED!
Parse time: 2077 milliseconds.
<< FOR STDPORT1 , PORT WITH (DEP EQ 'GIBRALTAR') BEGIN STRINGI PTP
<< END;
*> TOTAL BYTES TRANSFERRED: 18
Computation time for query: 1577 milliseconds.
Real time for query: 3921'3 milliseconds.
<< FOR STDPORT1 , SHIP WITH (NAM EQ 'KITTYHAWK') BEGIN STRINGI UIC
<< STRING2 = VCN END;
*> TOTAL BYTES TRANSFERRED: 13
<< CLOSE UNIT ;
<< OPEN %TOP.BLUEFILE.SAGALOWICZ.STDPORT2 WRITE;
<< FOR STDPORT2 , TRACKHIST WITH (UIC EQ 'N00003') AND (VCN EQ '0')
<< BEGIN STRINGI PTP STRING2 = PTD STRING3 =
<< (GCDIST (3545 , IN' , 530 1 'W' , PTPX , PTPNS , PTPY , PTPEW)) END;

*> TOTAL BYTES TRANSFERRED: 34
Computation time for query: 3129 milliseconds.
Real time for query: 55606 milliseconds.
(((PPTP '3545NO0530W' PTP '3700N01700E' PTD 7601171200 GDIST 1087)))

* The distance was 1087 nautical miles.

23

." "

5_what is his lineal number?
HIS => ((NAM EQ 'BIDDLE') ? RANK) ? CONAM))

* INLAND's interpretation of 'his' is the call to IDA for 'Who
* commands the Biddle?'

PARSED!
Parse time: 902 milliseconds.
<< FOR STDPORT1 , UNIT WITH (ANAME EQ 'BIDDL') BEGIN STRINGI LINEAL
<< STRING2 = RANK STRING3 = CONAM END;
*> TOTAL BYTES TRANSFERRED: 36
Computation time for query: 1218 milliseconds.
Real time for query: 32573 milliseconds.
(LINEAL 4850 RANK 'CAPT' CONAM 'J.TOWNES')

6_what ships have destination luanda
PARSED!
Parse time: 1075 milliseconds.
<< CLOSE TRACKHIST ;
<< OPEN %TOP.BLUEFILE.MOVES READ;
<< FOR STDPORT1 , MOVES WITH (DST EQ 'LUANDA') BEGIN STRINGI UIC
<< STRING2 = VCN END;
*> TOTAL BYTES TRANSFERRED: 34
<< FOR STDPORT1 , SHIP WITH (UIC EQ "'*) AND
<< (VCN EQ '22014' OR VCN EQ '22012') BEGIN STRINGI = NAM STRING3
<< VCN END;
*> TOTAL BYTES TRANSFERRED: 74
Computation time for query: 3431 milliseconds.
Real time for query: 78071 milliseconds.
(NAM 'TARANTED')
(NAM 'TARU')

7__what ships faster than the kennedy are within 500 miles of naples?
PARSED!
Parse time: 1232 milliseconds.

One question from the user's viewpoint can involve many
* data base queries. First, LADDER asks, 'Where is Naples?'

<< CLOSE STDPORT2 ;
<< OPEN %TOP.BLUEFILE.PORT READ;
<< FOR STDPORTI , PORT WITH (DEP EQ 'NAPLES') BEGIN STRINGI = PTP END;
*> TOTAL BYTES TRANSFERRED: 18
Computation time for query: 2301 milliseconds.
Real time for query: 91551 milliseconds.

* 'What is the maximum cruising speed of the Kennedy?'
<< FOR STDPORT1 , SHIP WITH (NAM EQ 'JOHN#F.KENNEDY') BEGIN STRINGI
<< MCSF END;
*> TOTAL BYTES TRANSFERRED: 10
Computation time for query: 1371 milliseconds.
Real time for query: 29867 milliseconds,

* 'What are the data base keys of the ships within 500 miles
* of Naples?'

<< CLOSE STDPORT

22

................................... --.

3_.the fastest russian ship within 400 miles of gibraltar?
Trying Ellipsis: WHERE IS THE FASTEST RUSSIAN SHIP WITHIN 400 MILES OF

GIBRALTAR
Parse time: 1738 milliseconds.
<< OPEN %TOP.BLUEFILE.PORT READ;
<< FOR STDPORT1 , PORT WITH (DEP EQ 'GIBRALTAR') BEGIN STRINGI = PTP
<< END;
*> TOTAL BYTES TRANSFERRED: 18
Computation time for query: 1197 milliseconds.
Real time for query: 40142 milliseconds.
<< FOR STDPORT2 , TRACKHIST WITH((((PTPNS EQ 'N') AND (PTPX LT
<< '042451') AND (PTPX GT '02845') AND (PTPEW EQ 'W') AND (PTPY LT
<< '01230') AND (PTPY GT '00000')) OR((PTPNS EQ 'N') AND (PTPX LT
<< '014245') AND (PTPX GT '02845') AND (PTPEW EQ 'E') AND (PTPY LT
<< '00170') AND (PTPY GT '00000')))) BEGIN STRINGI = PTP STRING2 = PTD
<< STRING3 = UIC STRING4 = VCN END;
*> TOTAL BYTES TRANSFERRED: 41
<< OPEN %TOP.BLUEFILE. SAGALOWICZ. STDPORT WRITE;
<< BEGIN DECLARE X STRING (,100) ,D=' ' DECLARE Y STRING (,100) ,D=' I
<< DECLARE Y1 STRING (,100) ,D=' ' DECLARE Y2 STRING (,100) ,D=' ' Y
<< I*' Y1 = "'* Y2 = I*' X = '00.0' FOR SHIP WITH (NAT EQ 'UR') AND
<< (UIC EQ "'*) AND (VCN EQ '99005') IF MCSF LT '99.9' AND X LT MCSF
<< THEN BEGIN Y = NAM X = MCSF END STDPORT.STRING1 = Y STDPORT.STRING2
<< = X END;
*> TOTAL BYTES TRANSFERRED: 45
Computation time for query: 5805 milliseconds.
Real time for query: 143126 milliseconds.
(NAM 'AMPERMETR' MCSF '15.0' PTP '360N01130W' PTD 7601171200)

4_who commands the biddle
PARSED!
Parse time: 711 milliseconds.

* FAM keeps track of the number of open files and ports. Since
a there is a limit to the number of these that the Datacomputer
a can support, FAM maintains a working set of open files and

• ports. The least recently used is the one to be closed.
<< CLOSE PORT ;
<< OPEN %TOP.BLUEFILE.UNIT READ;
<< FOR STDPORT1 , UNIT WITH (ANAME EQ 'BIDDLE') BEGIN STRINGI - RANK
<< STRING2 = CONAM END;
*> TOTAL BYTES TRANSFERRED: 32
Computation time for query: 1754 milliseconds.
Real time for query: 36638 milliseconds.
(RANK 'CAPT' CONAM 'J.TOWNES')

21

... .o.- o o o°. .-. -.. .. .-.... •. j.

>> .1210 770217200159 LAGC: READING NEW DL BUFFER
*> SET PARAMETERS
•< X EXIT
<< ^Z
•> SET PARAMETERS
*< V VERBOSITY (-1 TO 4): 1
*< P PROCEED WITH DATALANGUAGE

[CONFIRM WITH <CR>]
•FAM has now established the network connection. It proceeds
6 to log in and open the appropriate file.

<< LOGIN %TOP.BLUEFILE.GUEST ;
<< OPEN %TOP.BLUEFILE.SHIP READ;
<< OPEN %TOP.BLUEFILE.SAGALOWICZ.STDPORT1 WRITE;

• STDPORT, STDPORT1, STDPORT2, and STDPORT3 are Datacomputer
* 'ports' which serve both to define the network connection
* to-the Datacomputer and to specify the user's (in this case
• IDA's) view of the data. FAM is now finally ready to
* transmit-the query.

<< FOR STDPORT1 , SHIP WITH (NAM EQ 'JOHN#F.KENNEDY') BEGIN STRINGI
<< UIC STRING2 VCN END;
*> TOTAL BYTES TRANSFERRED: 13

<< OPEN %TOP.BLUEFILE.TRACKHIST READ;
<< OPEN %TOP.BLUEFILE.SAGALOWICZ.STDPORT2 WRITE;
<< FOR STDPORT2 , TRACKHIST WITH (UIC EQ 'N00002') AND (VCN EQ '0')
<< BEGIN STRINGI PTP STRING2 = PTD END;
*> TOTAL BYTES TRANSFERRED: 30
Computation time for query: 9211 milliseconds.

* This counts cpu time spent in IDA and FAM
Real time for query: 354881 milliseconds.

* This counts clock time from when requests are sent to the
• Datacomputer until replies are received.

(PTP '600N0300W' PTD 7601171200)
• The answer means that the ship was at 60 degrees north
latitude, 30 degrees west longitude at noon on January 17,

* 1976.

2..pecos
Trying Ellipsis: WHERE IS PECOS

Parse time: 1632 milliseconds.
<< FOR STDPORT1 , SHIP WITH (NAM EQ 'PECOS') BEGIN STRINGI = UIC
<< STRING2 = VCN END;
*> TOTAL BYTES TRANSFERRED: 17
<< FOR STDPORT2 , TRACKHIST WITH (UIC EQ '*') AND (VCN EQ '13003') BEGIN
<< STRINGI = PTP STRING2 = PTD END;
*> TOTAL BYTES TRANSFERRED: 21
Computation time for query: 2797 milliseconds.
Real time for query: 87120 milliseconds.
(PTP '2131S00234E' PTD 7601171200)

• The connection had been established and the files opened, so
• the entire operation proceeded more quickly.

20

Appendix

Transcript of Sample Session

@ladder

Please type in your name: X. S. Data
Do you want instructions? Yes
This program has access to 14 files which comprise a facsimile of a
Navy command and control data base. The data is stored on the
Datacomputer at NELC, with backup at CCA in Cambridge, Massachusetts.
The data base includes physical characteristics and position
information for all ships, and more detailed operational information
for U.S. Navy ships. Data about embarked U.S. Navy units, convoys of
merchant ships, and ports of departure and destination are also
available.

The system will respond to the question,
DESCRIBE THE FIELDS
with a description of all 72 fields in the data base. The information
in the data base is described in detail in a Technical Note available
from NELC.

IMPORTANT NOTE: The current version of the query answering system can
only perform some simple calculations on the values in the data base.
For example, it cannot answer questions about the composition of
organizational units or find the nearest ship to a given point.

Example questions include:
HOW FAR IS THE CONSTELLATION FROM CHARLESTON?
WHERE IS THE LOS ANGELES
THE LONGEST SHIP CARRYING VANADIUM ORE
WHEN WILL THE PHILADELPHIA REACH PORT?
WHAT U S SHIPS ARE WITHIN 400 MILES OF GIBRALTAR?

1_where is the kennedy?
PARSEDI
Parse time: 501 milliseconds.
Connecting to Datacomputer at NELC

* FAM indicates which computer is being accessed. The next 14
* lines are interactions between the remote datacomputer and
O the local FAM.

>> ;0031 770217200155 IONETI: CONNECTED TO USC-ISIR1-5400010
>> ;J150 770217200159 FCRUN: V='DC-3/0O.O0.5' J=2 DT:'THURSDAY,
**FEBRUARY 17, 1977 12:01:59-PST' S='USC-ISIR1'
>> 10041 770217200159 DNCTNX: DATACOMPUTER GOING DOWN IN 1636 MIN
**BECAUSE TENEX IS GOING DOWN AT FRI FEB 18 77 3:30:OOPM-PST FOR 330
*#MIN DUE TO DEBUGING SOFTWARE
>> ;J200 770217200159 RHRUN: READY FOR REQUEST

19

4 q, ', :,2 j':.., ., ¢ i .. i° .. .'" ' . , .'. .'" " "...* v" -...V.., ,,".. :....'.-

Our plans for data access include extensions to the input language

of IDA to permit quantified queries. This will enable the system to

distinguish between such queries as "What is the last reported position

of each sub?" and "What is the last reported position of any sub?"

We will attempt to demonstrate the generality of the IDA approach

to data base access planning by interfacing it to a CODASYL-type [17]

data base in addition to the relational data base currently on the

Datacomputer.

In addition to these efforts, which we expect will improve our

performance system, we are continuing to progress in our longer range

research. An integrated language understanding and access planning

system built around the representation of knowledge in semantic network

form is being designed. The longer term efforts will benefit from the

tool-building involved in the performance-oriented work. Development of

the performance system is guided and prioritized by the results and

problems encountered in our longer term research. The early successes

of this program have provided an initial demonstration of the beneficial

effect of simultaneously pursuing lower risk research aimed at cost-

effective performance and higher risk research aimed at advancing the

state of the art.

18

-. ,.-•. - ' .". .."..... . ..o - ... " ."• ... ,; - - -.-..... ' '

representation of what the inputs meant, but that could not be made to

run in real time. What was worse, there was no clear way to integrate

the efforts being put into the two approaches: the underlying control

structures and language defintition systems were incompatible.

After evaluating the benefits of the LIFER approach and reexamining

the requirements and behavior of the more semantically based systems, we

have developed a "core language system" that is capable of supporting

both approaches, and of supporting systems at intermediate positions on

the tradeoff between real-time performance and linguistic grounding.

The core system, which is being developed by Bill Paxton, accepts a

wide range of styles of language definition, ranging from the

semantically oriented syntax of the INLAND grammar to a very rich and

complex amalgam of multiple knowledge sources similar to that used by

the SRI speech understanding system [16]. What is most important is

that the core system accepts language definitions at intermediate points

within that range as well, and it should thus constitute a vehicle for

bringing more linguistically and semantically oriented styles of

language processing into actual use in a staged fashion. We are

developing a research plan that should enable us to simultaneously

explore the issues involved in true language understanding while

augmenting the power, coverage, and linguistic relevance of the

demonstration system.

17

F. Directions for Further Work

As of March 1977, the LADDER system has been brought to a stage of

development where it can be used with somb success and enjoyment by

casual users. It accepts a rather wide range of queries against a

simple data base, and exhibits a degree of robustness found in few

Artificial Intelligence systems. This has been achieved by making many

simplifying assumptions along the way. The language component does not

understand the user's queries in any fundamental sense; rather, it

reflexively invokes IDA with the appropriate arguments. The data access

component assumes that all queries can be answered by joining records

from various files. Both systems make strong assumptions that the user

knows the kinds of information that are in the data base and is asking

relevant questions.

Now that an initial system has been developed and demonstrated, we

can concentrate on efforts to improve its robustness, generality, and

coverage of the language. As we began our efforts in language

understanding in this domain almost two years ago, we were faced with a

clear trade-off between building two kinds of language systems. On the

one hand, systems existed that ran reliably in real time but had very

meagre semantic underpinnings, whose extensibility was clearly limited,

and which did not truly understand inputs to them, in the sense that

they did not compose an internal representation of their meanings. On

the other hand there were systems that covered the language much more

thoroughly, were better grounded linguistically, and developed a

16

FAM attempts to find alternative locations for the files referenced in

the query, establishes links to them, and retransmits the query. The

second type of error is an explicit complaint from the Datacomputer. In

practice, this usually arises when FAM's model is inaccurate, and a file

that was expected to be in a particular location in fact was not. In

this case, FAM updates its model and attempts to recover as before.

FAM is implemented by making strong use of the features of

INTERLISP that support multiple control and access environments [3)

[15]. When FAM opens a connection to a particular machine, it builds a

piece of pushdown stack that contains as locally bound variables the

appropriate information about that connection, and whose control

environment is poised to interact with the remote machine. When a

request is received by FAM that involves a file on that machine, the

relevant stack fragment is hooked up with the stack representing the

calling sequence of FAM through IDA through INLAND. Then the stack

fragment is given control, it interacts with the remote machine, and

finally control and the appropriate results are returned to the calling

module.

15

..

E. File Access Management

The third major component of LADDER, called FAM (for File Access

Manager) [143, locates particular files within the distributed data

base, establishes connections to them, and transmits to and monitors the

responses from the remote computers where the files are located. FAM

can recover from a range of expected types of errors by establishing

links to backup files and retransmitting the failed query.

FAM accepts as input Datalanguage commands that refer not to

specific files on specific machines, but to generic file names, whose

precise location is presumed to vary with time. We refer to this input

language as generic *datlaniuage. Based on a locally stored model of

the distributed file system, FAM selects the appropriate specific files

for the generic files mentioned in the commands. If network links to

the machines where the files reside do not yet exist, they are

established. If the files in question are not yet open, they are

opened. Finally, the specific file names are substituted for the

generic ones in the query, and the query is transmitted to the remote

machine.

If certain types of errors occur during the prosecution of the

query, FAM will attempt to recover. FAM currently handles two types of

error conditions. The first is a failure of the network connection,

which is usually noticed by the TENEX operating system as a lack of

interaction over the network for a given interval of time. In this case

14

.. .L . .. < ? . ? .

structural schema is embodied in a frame-like representation [11] with

individual frames defined for each field and each file. The program

generates a single query at a time, examines the results, and then

determines the next query to be asked. This approach can lead to

suboptimal sequences of file accesses or can even fail to answer an

answerable question, but it trades these shortcomings for rapid

execution and straightforward extensibility. The system, encoded in

INTERLISP, processes queries at the rate of about 300 milliseconds per

file accessed on a DEC KA-1O processor.

Our second approach, embodied in a design for a program called DBAP

(for Data Base Access Planner) [12], uses a formal, theorem-proving

approach. The structural schema is represented as a set of axioms about

the elements in the query language, the fields, and the files. These

axioms are encoded as QLISP [13] procedures. The program builds a

complete sequence of queries to the data base before beginning the

actual interactions with it. Thus, it can plan an optimal sequence of

file accesses, given a sufficiently detailed model of the data base. A

partial implementation indicates that this approach requires 15 to 30

seconds of CPU time to build an internal representation of the sequence

of queries, which is essentially an order of magnitude slower than IDA.

For very large files this expenditure of planning time would undoubtedly

be repaid by faster data base retrieval.

[4

~13

"''"" "" ° " " "' '// "'" " " " "' ." "* ." ". ".* " **. -" ' " ' ' -' ' ' ' ' '-'- °z * • ?- : • '-" " * - *.% * "" . . . ". " * . .

- - -7"- - ,

D. Intelligent Data Access

A casual user would like to be able to access a data base as if it

were an unstructured mass of information. Unfortunately, a data base is

in reality a collection of files, often with very complex linkages among

them. Even worse, a distributed data base may consist of different

files on different machines, possibly handled by different DBMSs. An

optration amounting to automatic problem solving is required to decide

how to link up the files in the data base to extract and aggregate the

information requested in a given query. An example of this situation is

presented in question 7 in the Appendix, where a single question from

the user's point of view requires four queries of three files to develop

an answer.

Our initial efforts in this area have concentrated on access

planning for collections of data bases supporting a relational model of

the data [9]. The knowledge necessary to decide how to link among

relations is contained in what we call a truurl schema. The

structural schema contains information for each relation describing how

it can be linked to other relations. In addition it contains

information about each field's counterparts in other relations and

certain special-case information.

We have taken two approaches to the process of intelligent data

access. The first, embodied in a program called IDA [10), uses a

heuristic approach to the problem of linking among files. The

12

The nature of the LIFER parser imposes a discipline on the

developer of the language definition. For parsing to operate

efficiently, the grammar must fan out as broadly as possible, and the

tests applied to words in the left-to-right scan must be as cheap as

possible. These goals are best satisfied with a language definition

that directly encodes into the syntax most of the restrictions imposed

by the semantics of the domain. Rather than contain meta-symbols like

*"noun phrase," the INLAND grammar is composed of entities like

"primitive ship specification," "carry-verb phrase," and "pair of

* positions." Questions 14 and 15 in the Appendix give examples of a

* small fragment of the INLAND grammar. This approach of producing a

semantically-oriented syntax is similar to that used by Brown and Burton

* [63 [73 and Waltz [8].

[.

Using LIFER's interactive language definition facilities we have

developed a language definition that we believe is one of the most

* extensive ever incorporated into a computer system. It accepts a wide

range of queries about the information in the data base as well as

queries about the definitions of data base fields and about the grammar

itself. Access to the paraphrase mechanism is also provided in natural

language.

I tht drecly ncods ito he ynta mot o th resricion imose

top-down, left-to-right order. The response of the system to a user's

* input is simply the evaluation of the response expression associated

with the top-level pattern that matches the input, together with all the

subsidiary response expressions associated with meta-symbols contained

in the expansion of the top-level pattern or any expansion of a higher-

level meta-symbol.

The most important feature of LIF-1 from the point of view of

developing a rich and usable language definition is the ease with which

the grammar can be updated and the consequent changes tested. The ease

of altering the grammar is such that LIFER provides a facility for

casual users to add paraphrases to the language definition, in English.

For example, the user might type

DEFINE ? LENGTH KENNEDY) TO BE LIKE (WHAT IS THE LENGTH OF
THE KENNEDY).

Subsequently, the system will accept

? COMMANDER KITTY HAWK

and

? SPEED AND CURRENT POSITION SUBS WITHIN 400 MILES OF
GIBRALTAR

and interpret them correctly. Questions 9 through 13 in the Appendix

provide examples of this capability.

The LIFER parser has a very powerful mechanism for processing

elliptical inputs, as exemplified by questions 2, 3, and 15 in the

Appendix. Simple kinds of anaphoric reference, such as that shown in

question 5 in the Appendix, are handled within the language definition.

10

........
"-S -5,"- - ','' , & m.; '"-" -"-o,' '''" ""'"J-'- . . '" - ,'L'" ":

9_is there a doctor embarked in the jfk
* 'jfk' is not in the lexicon (yet).

• THE PARSER DOES NOT EXPECT THE WORD "JFK" TO FOLLOW
*"IS THERE A DOCTOR EMBARKED IN THE"
* OPTIONS FOR NEXT WORD OR META-SYMBOL ARE:

end-of-list

10_define jfk to be like kennedy
• The lexicon is augmented by the user, in natural language.
• 'jfk' will henceforth be accepted by INLAND, and will be
• interpreted in the same way that 'kennedy' is.

FINISHED

1 1redo 9
• The INTERLISP redo feature is used to reinvoke question 9.

PARSED!
Parse time: 1327 milliseconds.
<< CLOSE MOVES ;
<< OPEN %TOP.BLUEFILE.UNIT READ;
<< CLOSE PORT ;
<< OPEN %TOP.BLUEFILE.SAGALOWICZ. STDPORT WRITE;
<< BEGIN DECLARE X INTEGER X = 0 FOR UNIT WITH (DOCTR EQ 'D') AND
<< (ANAME EQ 'JOHN#F.KENNEDY') X=X+1 STDPORT.STRING1=X END;
•> TOTAL BYTES TRANSFERRED: 16
Computation time for query: 3572 milliseconds.
YES

12_define ($ length jfk)
...to be like (what is the length of the jfk)

• Here we define a new grammatical construction by use of the
• LIFER paraphrase feature. Since the system's only

• understanding of 'what is the length of the jfk' is the call
• on the data base, the question is answered as a side-effect
• of defining the paraphrase.

PARSED!
Parse time: 596 milliseconds.
<< FOR STDPORT1 , SHIP WITH (NAM EQ 'JOHN#F.KENNEDY') BEGIN STRING*
<< LGHN END;
*> TOTAL BYTES TRANSFERRED: 10
Computation time for query: 1514 milliseconds.
Real time for query: 46331 milliseconds.
(LGHN 1072)

• The question was answered; the kennedy is 1072 feet long.
• LIFER now prints out the new production rule and associated
* response expression that embody the generalization of the

paraphrase given by the user.
LIFER.TOP.GRAMMAR -> $ <RELN> <ENTITY>
F0282
($ <RELN> <ENTITY>)

24

13_$ current position and heading all los angeles class submarines
* The new pattern can immediately be used as part of the
I grammar.

PARSED!
Parse time: 1508 milliseconds.
<< CLOSE TRACKHIST ;
<< OPEN %TOP.BLUEFILE.SHIPCLASCHAR READ;
<< FOR STDPORT1 , SHIPCLASCHAR WITH (SHIPCLAS EQ 'LOS#ANGELES') AND
<< ((TYPEl EQ 'S') AND (TYPE2 EQ 'S')) BEGIN STRINGI = SHIPCLAS END;
*> TOTAL BYTES TRANSFERRED: 30
<< CLOSE STDPORT2
<< OPEN %TOP.BLUEFILE.SHIPCLASDIR READ;
<< FOR STDPORT1 , SHIPCLASDIR WITH (SHIPCLAS EQ 'LOS#ANGELES') BEGIN
<< STRINGI = UIC STRING2 = VCN END;
*> TOTAL BYTES TRANSFERRED: 39
<< CLOSE UNIT
<< OPEN %TOP.BLUEFILE.TRACKHIST READ;
<< CLOSE STDPORT ;
<< OPEN %TOP.BLUEFILE.SAGALOWICZ.STDPORT2 WRITE;
<< FOR .STDPORT2 , TRACKHIST WITH
<< (UIC EQ 'N00009' OR UIC EQ 'N00008' OR UIC EQ 'N00007') AND (VCN EQ
<< '0') BEGIN STRINGI = PTP STRING2 = PTD STRING3 = PTC STRING4 = UIC
<< END;
*> TOTAL BYTES TRANSFERRED: 114
Computation time for query: 7220 milliseconds.
Real time for query: 226777 milliseconds.
(PTP '0000N04500E' PTD 7601171200 PTC NAVAIL)
(PTP '1500S01300E' PTD 7601171200 PTC NAVAIL)
(PTP '3700S02000E' PTD 7601171200 PTC NAVAIL)

* In addition to answering questions about the data base, LADDER
* can answer questions about its own language definition.

14_how is <entity> used
PARSED!
"<ENTITY> " may be any sequence of words following one of the patterns:
<ENTITY> => <BASIC.ENTITY>
<ENTITY> => <BASIC.ENTITY> <AGENT>
<ENTITY> => <3RD.PERSON.SINGULAR.PRONOUN>
<ENTITY> => <3RD.PERSON.PLURAL.PRONOUN>
<ENTITY> => <EMBARKED.UNIT.SPEC>
<ENTITY> => <COMMANDER.SPEC>
<ENTITY> => <IST.PERSON.PRONOUN>
<ENTITY> => <AGENT> <REF> <ENTITY>
Finished

-2

25

----------..

, .a

15_<agent>
Trying Ellipsis: HOW IS <AGENT>USED
"<AGENT> " may be any member of the set {CAPTAIN COMMANDER CONAM
COUNTRIES COUNTRY OWN OWNER SKIPPER}
"<AGENT> " may be any sequence of words following one of the patterns:
<AGENT> => COMMANDING OFFICER
<AGENT> => <DET> <AGENT>
<AGENT> => <3RD.PERSON.SINGULAR.MASCULINE.PRONOUN>
Finished

* 16__done
File closed 17-FEB-77 15:44:03
^Z
*> SET PARAMETERS
*< Q QUIT

[CONFIRM WITH <CR>]
* Thank you

26

, .% .*. . ***

REFERENCES

1. J. Farrell, "The Datacomputer - A Network Data Utility," Proc,
erkl eWorkshon = Ditrt k Managment an

Neworks, Berkeley, Ca., pp. 352-364 (May 1976).

2. Computer Corporation of America, "Datacomputer Version 1 User
Manual," CCA, Cambridge, Mass. (August 1975).

3. W. Teitelman, "INTERLISP Reference Manual," Xerox PARC, Palo Alto,
Ca. (December 1975).

4. G. G. Hendrix, "Human Engineering for Applied Natural
Language Processing," submitted to 5th IJCAI, Cambridge, Mass.
(August 1977).

5. W. A. Woods, "Transition Network Grammars for Natural
Language Analysis," LA=M, Vol. 13, No. 10, pp. 591-606 (October
1970).

6. J. S. Brown and R. R. Burton, "Multiple Representations
of Knowledge for Tutorial Reasoning," pp. 311-349, D. G. Bobrow and
A. Collins, eds., Reoresentation A= Understanding (Academic Press,
New York, 1975).

7. R. R. Burton, "Semantic Grammar: An Engineering Technique for
Constructing Natural Language Understanding Systems," BBN Report
No. 3453, Boston, Mass. (December 1976).

8. D. Waltz, "Natural Language Access to a Large Data Base: an
Engineering Approach," Proc. 4hIJCAI, Tbilisi, USSR, pp. 868-872
(September 1975).

9. E.F. Codd, "A Relational Model of Data for 'large Shared
Data Banks," L=, Vol. 13 No. 6, pp. 377-397 (June 190).

10. D. Sagalowicz, "IDA: An Intelligent Data Access Program," submitted
to SIGMOD Conference, Toronto, Canada (August 1977).

11. M. Minsky, "A Framework for Representing Knowledge," Artificial
Intelligence Memo No. 306, MIT, Cambridge, Mass. (June 1974).

12. K. Furukawa, "A Deductive Question Answering System on Relational

Data Bases," submitted to 5th IJCAI, Cambridge, Mass. (August
1977).

27

o , . . , . . .

13. B. M. Wilber, "A QLISP Reference Manual," Artificial
Intelligence Center Technical Note No. 118, Stanford Research
Institute, Menlo Park, Ca. (March 1976).

14. P. Morris and D. Sagalowicz, "Managing Network Access to a
Distributed Data Base," forthcoming in Proc. Second
Berkeley WorkshopM tn ibutd DaIanagemnt and Computer
Networks, Berkeley, Ca. (May 1977).

15. D. G. Bobrow and B. Wegbreit, "A Model for Control Structures for
Artificial Intelligence Programming Languages," Proc. 3rd IJCA1,
Stanford, Ca., pp. 246-253 (August 1973).

16. D. Walker et al., "An Overview of Speech Understanding Research at
SRI," submitted to 5th IJCAI, Cambridge, Mass. (August 1977).

17. CODASYL Data Base Task Group, Anril 1971 R (ACM, New York,
1971).

28

FILMED

10-85

DTIC
. m

